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Monotone Convergence Theorem. A monotone sequence of real number is convergent
if and only if it is bounded. Furthermore,

(a) If (xn) is a bounded increasing sequence, then lim(xn) = sup{xn : n ∈ N}.

(b) If (yn) is a bounded decreasing sequence, then lim(yn) = inf{yn : n ∈ N}.

Example 1. Let Z = (zn) be the sequence of real numbers defined by

z1 := 1, zn+1 :=
√

2zn for n ∈ N.

Show that lim(zn) = 2.

Example 2 (Euler number e). Let en := (1 + 1/n)n for n ∈ N. Show that the sequence
E = (en) is bounded and increasing, hence convergent. The limit of this sequence is called
the Euler number, and it is denoted by e.

Definition. Let X = (xn) be a sequence of real numbers and let n1 < n2 < · · · < nk < · · ·
be a strictly increasing sequence of natural numbers. Then the sequence X ′ = (xnk

)
given by

(xn1 , xn2 , . . . , xnk
, . . . )

is called a subsequence of X.

Theorem. If a sequence X = (xn) of real numbers converges to a real number x, then
any subsequence X ′ = (xnk

) of X also converges to x.

Example 3. By considering subsequences, deduce the following limits.

(a) lim(bn) = 0 if 0 < b < 1.

(b) lim(c1/n) = 1 if c > 1.
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1. Establish the convergence or the divergence of the sequence (xn), where

xn :=
1

n + 1
+

1

n + 2
+ · · ·+ 1

2n
for n ∈ N.

Solution . Note that, for all n ∈ N,

xn+1 − xn =

(
1

n + 2
+ · · ·+ 1

2n
+

1

2n + 1
+

1

2n + 2

)
−
(

1

n + 1
+ · · ·+ 1

2n

)
=

1

2n + 1
+

1

2n + 2
− 1

n + 1

=
1

(2n + 1)(2n + 2)
> 0,

and

xn ≤
1

n
+ · · ·+ 1

n︸ ︷︷ ︸
n terms

= 1.

Therefore (xn) is increasing, bounded above, and hence convergent by Monotone
Convergence Theorem. J

2. Let y1 :=
√
p, where p > 0, and yn+1 :=

√
p + yn for n ∈ N. Show that (yn)

converges and find the limit. (Hint: 1 + 2
√
p is one upper bound.)

Solution . Note y2 =
√
p +
√
p >

√
p = y1. Suppose yk+1 > yk for some k ∈ N.

Then
yk+2 =

√
p + yk+1 >

√
p + yk = yk+1.

By induction, yn+1 > yn for all n ∈ N.

Note y1 =
√
p < 1 + 2

√
p. Suppose yk < 1 + 2

√
p for some k ∈ N. Then

yk+1 =
√
p + yk <

√
p + 1 + 2

√
p =

√
(1 +

√
p)2 < 1 + 2

√
p.

By induction, yn < 1 + 2
√
p. for all n ∈ N.

The sequence (yn) is thus increasing and bounded above. By Monotone Convergence
Theorem, y := lim(yn) exists. Since yn+1 =

√
p + yn, we have

y =
√
p + y =⇒ y2 − y + p = 0 =⇒ y =

1

2

(
1±

√
1 + 4p

)
.

Since yn > 0 for all n ∈ N, we have y ≥ 0 and hence y =
1

2

(
1 +
√

1 + 4p
)
. J


